91 research outputs found

    Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features

    Get PDF
    During online speech processing, our brain tracks the acoustic fluctuations in speech at different timescales. Previous research has focused on generic timescales (for example, delta or theta bands) that are assumed to map onto linguistic features such as prosody or syllables. However, given the high intersubject variability in speaking patterns, such a generic association between the timescales of brain activity and speech properties can be ambiguous. Here, we analyse speech tracking in source-localised magnetoencephalographic data by directly focusing on timescales extracted from statistical regularities in our speech material. This revealed widespread significant tracking at the timescales of phrases (0.6–1.3 Hz), words (1.8–3 Hz), syllables (2.8–4.8 Hz), and phonemes (8–12.4 Hz). Importantly, when examining its perceptual relevance, we found stronger tracking for correctly comprehended trials in the left premotor (PM) cortex at the phrasal scale as well as in left middle temporal cortex at the word scale. Control analyses using generic bands confirmed that these effects were specific to the speech regularities in our stimuli. Furthermore, we found that the phase at the phrasal timescale coupled to power at beta frequency (13–30 Hz) in motor areas. This cross-frequency coupling presumably reflects top-down temporal prediction in ongoing speech perception. Together, our results reveal specific functional and perceptually relevant roles of distinct tracking and cross-frequency processes along the auditory–motor pathway

    MEG Activity in Visual and Auditory Cortices Represents Acoustic Speech-Related Information during Silent Lip Reading

    Get PDF
    Speech is an intrinsically multisensory signal, and seeing the speaker’s lips forms a cornerstone of communication in acoustically impoverished environments. Still, it remains unclear how the brain exploits visual speech for comprehension. Previous work debated whether lip signals are mainly processed along the auditory pathways or whether the visual system directly implements speech-related processes. To probe this, we systematically characterized dynamic representations of multiple acoustic and visual speech-derived features in source localized MEG recordings that were obtained while participants listened to speech or viewed silent speech. Using a mutual-information framework we provide a comprehensive assessment of how well temporal and occipital cortices reflect the physically presented signals and unique aspects of acoustic features that were physically absent but may be critical for comprehension. Our results demonstrate that both cortices feature a functionally specific form of multisensory restoration: during lip reading, they reflect unheard acoustic features, independent of co-existing representations of the visible lip movements. This restoration emphasizes the unheard pitch signature in occipital cortex and the speech envelope in temporal cortex and is predictive of lip-reading performance. These findings suggest that when seeing the speaker’s lips, the brain engages both visual and auditory pathways to support comprehension by exploiting multisensory correspondences between lip movements and spectro-temporal acoustic cues

    Stimulus-driven brain rhythms within the alpha band:The attentional-modulation conundrum

    Get PDF
    Two largely independent research lines use rhythmic sensory stimulation to study visual processing. Despite the use of strikingly similar experimental paradigms, they differ crucially in their notion of the stimulus-driven periodic brain responses: One regards them mostly as synchronised (entrained) intrinsic brain rhythms; the other assumes they are predominantly evoked responses (classically termed steady-state responses, or SSRs) that add to the ongoing brain activity. This conceptual difference can produce contradictory predictions about, and interpretations of, experimental outcomes. The effect of spatial attention on brain rhythms in the alpha-band (8 -- 13 Hz) is one such instance: alpha-range SSRs have typically been found to increase in power when participants focus their spatial attention on laterally presented stimuli, in line with a gain control of the visual evoked response. In nearly identical experiments, retinotopic decreases in entrained alpha-band power have been reported, in line with the inhibitory function of intrinsic alpha. Here we reconcile these contradictory findings by showing that they result from a small but far-reaching difference between two common approaches to EEG spectral decomposition. In a new analysis of previously published human EEG data, recorded during bilateral rhythmic visual stimulation, we find the typical SSR gain effect when emphasising stimulus-locked neural activity and the typical retinotopic alpha suppression when focusing on ongoing rhythms. These opposite but parallel effects suggest that spatial attention may bias the neural processing of dynamic visual stimulation via two complementary neural mechanisms

    Action perception in development: The role of experience

    Get PDF
    The perception of an action and its production are inextricably linked. This entails that, during development, the skills that children are able to perform influence their perception of others\\\'' actions. The present dissertation aimed to investigate the role of children’s experience on the perception of actions in three distinctive areas: manual actions performed by one person (individual action), manual actions performed by two people (joint action), and a conversation between two people. In order to succeed in each of the three areas, children have to acquire new skills and do so successively during their first three years of life. The methodological approach of this work was to measure the gaze behaviour of children, aged 6 months to 3 years, and adults during the observation of visually presented actions, which provided information on whether they were able to anticipate action goals. The findings obtained generally show an influence of experience on the anticipation of action goals in each of the three areas. First, a link between action and perception is not established as soon as an action emerges. There is at least some experience necessary for its development. Second, infants with no coordinated joint-action skills themselves anticipate the goals of joint action less well than those of individual action. Adults with considerable joint-action skills anticipate both equally well. And third, the course of a conversation can only be reliably anticipated by children aged 3 years and adults, whereas younger children shift their gaze between speakers randomly. Furthermore, only at the age of 3 years, did intonation support children’s anticipation of conversations

    Cortical tracking of formant modulations derived from silently presented lip movements and its decline with age

    Get PDF
    The integration of visual and auditory cues is crucial for successful processing of speech, especially under adverse conditions. Recent reports have shown that when participants watch muted videos of speakers, the phonological information about the acoustic speech envelope, which is associated with but independent from the speakers’ lip movements, is tracked by the visual cortex. However, the speech signal also carries richer acoustic details, for example, about the fundamental frequency and the resonant frequencies, whose visuophonological transformation could aid speech processing. Here, we investigated the neural basis of the visuo-phonological transformation processes of these more fine-grained acoustic details and assessed how they change as a function of age. We recorded whole-head magnetoencephalographic (MEG) data while the participants watched silent normal (i.e., natural) and reversed videos of a speaker and paid attention to their lip movements. We found that the visual cortex is able to track the unheard natural modulations of resonant frequencies (or formants) and the pitch (or fundamental frequency) linked to lip movements. Importantly, only the processing of natural unheard formants decreases significantly with age in the visual and also in the cingulate cortex. This is not the case for the processing of the unheard speech envelope, the fundamental frequency, or the purely visual information carried by lip movements. These results show that unheard spectral fine details (along with the unheard acoustic envelope) are transformed from a mere visual to a phonological representation. Aging affects especially the ability to derive spectral dynamics at formant frequencies. As listening in noisy environments should capitalize on the ability to track spectral fine details, our results provide a novel focus on compensatory processes in such challenging situations
    • …
    corecore